The Scope of Environmental Engineering

Scope of Environmental Engineering

Briefly speaking, the main task of environmental engineers is to protect public health by protecting (from further degradation), preserving (the present condition of), and enhancing the environment. Environmental engineering is the application of science and engineering principles to the environment. Some consider environmental engineering to include the development of sustainable processes. There are several divisions of the field of environmental engineering.

Environmental impact assessment and mitigation

In this division, engineers and scientists use a systemic identification and evaluation process to assess the potential impacts of a proposed project , plans, programs, policies, or legislative actions upon the physical-chemical, biological, cultural, and socioeconomic components on environmental conditions. They apply scientific and engineering principles to evaluate if there are likely to be any adverse impacts to water quality, air quality, habitat quality, flora and fauna, agricultural capacity, traffic impacts, social impacts, ecological impacts, noise impacts, visual (landscape) impacts, etc. If impacts are expected, they then develop mitigation measures to limit or prevent such impacts. An example of a mitigation measure would be the creation of wetlands in a nearby location to mitigate the filling in of wetlands necessary for a road development if it is not possible to reroute the road.

The practice of environmental assessment was intitiated on January 1, 1970, the effective date of the National Environmental Policy Act (NEPA) in the United States. Since that time, more than 100 developing and developed nations either have planned specific analogous laws or have adopted procedure used elsewhere. NEPA is applicable to all federal agencies in the United States.

Water supply and treatment

Engineers and scientists work to secure water supplies for potable and agricultural use. They evaluate the water balance within a watershed and determine the available water supply, the water needed for various needs in that watershed, the seasonal cycles of water movement through the watershed and they develop systems to store, treat, and convey water for various uses. Water is treated to achieve water quality objectives for the end uses. In the case of potable water supply, water is treated to minimize the risk of infectious disease transmission, the risk of non-infectious illness, and to create a palatable water flavor. Water distribution systems are designed and built to provide adequate water pressure and flow rates to meet various end-user needs such as domestic use, fire suppression, and irrigation.

Water pollution

Most urban and many rural areas no longer discharge human waste directly to the land through outhouse, septic, and/or honey bucket systems, but rather deposit such waste into water and convey it from households via sewer systems. Engineers and scientists develop collection and treatment systems to carry this waste material away from where people live and produce the waste and discharge it into the environment. In developed countries, substantial resources are applied to the treatment and detoxification of this waste before it is discharged into a river, lake, or ocean system. Developing nations are striving to obtain the resources to develop such systems so that they can improve water quality in their surface waters and reduce the risk of water-borne infectious disease.

Air quality management

Engineers apply scientific and engineering principles to the design of manufacturing and combustion processes to reduce air pollutant emissions to acceptable levels. Scrubbers, electrostatic precipitators, catalytic converters, and various other processes are utilized to remove particulate matter, nitrogen oxides, sulfur oxides, volatile organic compounds (VOC), reactive organic gases (ROG) and other air pollutants from flue gases and other sources prior to allowing their emission to the atmosphere.

Scientists have developed air pollution dispersion models to evaluate the concentration of a pollutant at a receptor or the impact on overall air quality from vehicle exhausts and industrial flue gas stack emissions. To some extent, this field overlaps the desire to decrease carbon dioxide and other greenhouse gas emissions from combustion processes.

Follow us Twiter RSS